
ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 10, October 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41075 349

Improvement of Network Optimization and Cost

Reduction in End To End Process Implementing

in Clouds

A. Sree Valli
1
, R. Chandrasekhar

2

PG Scholar, Department of C.S.E, KIET College, JNTUK A.P
1

Assistant Professor, Department of C.S.E, KIET College, JNTUK A.P
2

Abstract: Many past systems have explored with the problem is how to eliminate a novel end-to-end traffic

redundancy by which improves network efficiency. Several of these systems operate at the application layer while the

more recent systems operate on individual packets. In this paper, we present PACK (Predictive ACKs), a novel

designed for cloud computing customers end-to-end traffic redundancy elimination (TRE) system. PACK’s main

advantage is its capability of increase the offloading the cloud-server TRE effort very end client, thus minimizing the

processing costs activate by the TRE algorithm. Like other techniques PACK does not require any external support to

maintain client’s status. By combing cloud computing client the efficiency per physical hosted server is improved

greatly, data and resources are hotfoot provisioned provided as standardized offerings to users with a flexible price. But

it is important to provide the convenient pricing model for the users of cloud. Hence we design a new traffic

redundancy and elimination scheme for reducing the cloud bandwidth and costs. PACK is based on a novel TRE

technique, which allows the client to use newly received block to identify previously received block chains, which in

turn can be used as reliable, with respective predictors to future transmitted blocks. We present a fully functional

PACK implementation transparent to all TCP-based applications and network devices. Finally, we analyze PACK

benefits for cloud users, using traffic traces from various sources.

Index Terms: cloud computing, traffic redundancy elimination, quality of service, caching, network optimization.

1. INTRODUCTION

Cloud Computing provides computer resources as a

service and it is a technology revolution offering flexible

IT usage in a cost efficient and pay-per-use way. Cloud

customers pay only for the actual use of computing

resources, storage, and bandwidth, according to their

changing needs, utilizing the cloud’s scalable and elastic

computational capabilities. In particular, data transfer

costs (i.e., bandwidth) is an important issue when trying

to minimize costs. Cloud customers applying a judicious

use of the cloud’s resources are motivated to use various

traffic reduction techniques, in particular traffic

redundancy elimination (TRE), for reducing bandwidth

costs. Traffic redundancy stems from common end-

users’ activities, such as repeatedly accessing,

downloading, uploading (i.e. backup), distributing, and

modifying the same or similar information items. TRE is

used to eliminate the transmission of redundant content

and, therefore to significantly reduce the network cost. In

most common TRE solutions, both the sender and the

receiver examine and compare signatures of data chunks,

parsed according to the data content, prior to their

transmission.

When redundant chunks are detected, the sender replaces

the Transmission of each redundant chunk with its strong

signature while proprietary middle-boxes are popular

point solutions within enterprises; they are not as

attractive in a cloud environment. The rise of ―on-

demand‖ work spaces, meeting rooms, and work-from-

home solutions detaches the workers from their offices. In

such a dynamic work environment, fixed-point solutions

that require a client-side and a server-side middle-box pair

become ineffective. Current end-to-end TRE solutions are

sender-based. In the case where the cloud server is the

sender, these solutions require that the server continuously

maintain clients’ status. Clearly a TRE solution that puts

most of its computational effort on the cloud side may turn

to be less cost-effective than the one that leverages the

combined client-side capabilities. The sender-based end-to-

end TRE solutions add a considerable load to the servers,

which may eradicate the cloud cost saving addressed by the

TRE and it require to maintain end-to-end synchronization

that may degraded TRE efficiency. Here make use of a

novel receiver-based end-to end TRE solution that relies on

the power of predictions to eliminate redundant traffic

between the cloud and its end users.

2. RELATED WORK

2.1 A low-bandwidth network files system (LBFS)

The LBFS is a network file system designed for low

bandwidth networks. LBFS exploits similarities between

files or versions of the same file to save bandwidth. It

avoids sending data over the network when the same data

can already be found in the server’s file system or the

client’s cache. Using this technique in conjunction with

conventional Compression and caching, LBFS consumes

over an order of magnitude less bandwidth than

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 10, October 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41075 350

traditional network file systems on common workloads.

2.2 SmartRE: architecture for coordinated network

wide redundancy elimination

SmartRE is a practical and efficient architecture for

network wide RE. The SmartRE can enable more

effective utilization of the available resources at network

devices by reducing the wide-area footprint, and by

improve end-to-end application performance. Therefore

SmartRE can magnify the overall benefits of network-

wide RE. SmartRE is naturally suited to handle

heterogeneous resource constraints and traffic patterns

and for incremental deployment.

2.3 Redundancy in network traffic: Findings and

implications

The protocol-independent redundancy elimination, are

used

to improve network link performance by removing

duplicate strings from within arbitrary network flows,

has emerged as a powerful technique to improve the

efficiency of network links in the face of repeated data.

Many vendors offers such redundancy elimination

middle boxes to improve the effective bandwidth of

enterprise, data center and ISP link

2.4 EndRE: An end-system redundancy elimination

service for enterprises

EndRE is an alternative approach where redundancy

elimination (RE) is provided as an end system service.

Unlike middle boxes, such an approach benefits both

end-to-end encrypted traffic as well as traffic on last-hop

wireless links to mobile devices. EndRE uses a new

fingerprinting scheme called Sample Byte is much faster

than Rabin fingerprinting while delivering similar

compression gains. Unlike Rabin fingerprinting, Sample

Byte can also adapt its CPU usage depending on server

load. End-to-end latencies by up to 30%, and translates

bandwidth savings into equivalent energy savings on

mobile smart phones. successful solutions that allow

nodes to communicate with each other in these extreme

networking environments [1]–[3]. Typically, when there

is no end-to-end connection between a source and a

destination pair, the messages from the source node may

need to wait in the intermediate nodes for a substantial

amount of time until the connection would be eventually

established.

3. EXISTING SYSTEM

Traffic redundancy systems from common end users

activities, such as repeatedly accessing, downloading

uploading, distributing and modifying same or similar

information items (documents, data, web and video).

TRE is used to eliminate the transmission of redundant

content .To significant reduces the network cost. In most

common TRE solutions, both the sender and the receiver

Examine and compare signatures of data chunks, parsed

according to the data content, prior to their transmission.

When redundant chunks are detected, the Sender replaces

the transmission of each redundant Chunk with its strong

signature. Commercial TRE Solutions are popular

enterprise networks and involve the development of two or

more proprietary- Protocol, state synchronise middle-boxes

at both the intranet entry points of data centers.

DISADVANTAGES OF EXISTING SYSTEMS

goal is to reduce customer Bandwidth bill.

-demand‖ work spaces, meeting rooms,

and work-from-home solutions dethatches the workers from

their offices. In such a dynamic work environment, fixed-

point solutions that require client-side and a server- side

middle-box pair become in effective.

to a server-side process and data migration environment, In

which TRE solutions that require full synchronization

between the server and the client are hard to accomplish or

may loss efficiency due to lost synchronisation.

-to-end solutions also suffer from the

requirement to maintain end-to-end synchronisations that

may result in degraded TRE efficiency.

4. PROPOSED SYSTEM

In this paper, we present a novel receiver-based end-to-end

TRE solution that relies on the power of prediction to

eliminate redundant traffic between the cloud and its end-

users. In this solution each receiver observes the incoming

stream and tries to match its chunks with a previously

received chunk chain or a chunk chain of a local file. Using

the long-term chunks metadata information kept locally, the

receiver sends to the server predictions that include chunks

signatures and easy-to-verify hints of the sender user’s data.

ADVANTAGES OF PROPOSED SYSTEMS

Our approach can reach the data processing speed over

3Gbs at least 20% faster than Rabin fingerprinting

-based TRE solution addresses mobility

problems common to quasi-mobile desktop.

 is cloudy elasticity due to which servers

dynamically relocated around the federate cloud, thus

causing clients to interact with multiple changing servers.

 tested, and performed realistic

experiments with PACK within a cloud environment. our

experiments demonstrate a cloud cost reduction achieved at

a reasonable client effort while gaining additional band

width savings at the client side.

5. SYSTEM ARCHITECTURE

 Fig1. System Architecture

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 10, October 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41075 351

PACK ALGORITHM The stream of data received at

the PACK receiver is parsed to a sequence of variable-

size, content-based signed chunks similar to [3] and [5].

The chunks are then compared to the receiver local

storage, termed chunk store. If a matching chunk is

found in the local chunk store, the receiver retrieves the

sequence of subsequent chunks, referred to as a chain, by

traversing the sequence of LRU chunk pointers that are

included in the chunks’ metadata.

 A. Receiver Chunk Store
PACK uses a new chains scheme, described in Fig. 1, in

which chunks are linked to other chunks according to

their last received order. The PACK receiver maintains a

chunk store, which is a large size cache of chunks and

their associated metadata. Chunk’s metadata includes the

chunk’s signature and a (single) pointer to the successive

chunk in the last received stream containing this chunk.

Caching and indexing techniques are employed to

efficiently maintain and retrieve the stored chunks, their

signatures, and the chains formed by traversing the

chunk pointers when the new data are received and

parsed to chunks, the receiver computes each chunk’s

signature using SHA-1. At this point, the chunk and its

signature are added to the chunk store. In addition, the

metadata of the previously received chunk in the same

stream is updated to point to the current chunk. The

unsynchronized nature of PACK allows the receiver to

map each existing file in the local file system to a chain

of chunks, saving in the chunk store only the metadata

associated with the chunks. Using the latter observation,

the receiver can also share chunks with peer clients

within the same local network utilizing a simple map of

network drives. The utilization of a small chunk size

presents better redundancy elimination when data

modifications are fine-grained, such as sporadic changes

in an HTML page. On the other hand, the use of smaller

chunks increases the storage index size, memory usage,

and magnetic disk seeks. It also increases the

transmission overhead of the virtual data exchanged

between the client and the server. Unlike IP-level TRE

solutions that are limited by the IP packet size (B),

PACK operates on TCP streams and can therefore handle

large chunks and entire chains. Although our design

permits each PACK client to use any chunk size, we

recommend an average chunk size of 8 kB.

B. Receiver Algorithm

 Upon the arrival of new data, the receiver computes the

respective signature for each chunk and looks for a

match in its local chunk store. If the chunk’s signature is

found, the receiver determines whether it is a part of a

formerly received chain, using the chunks’ metadata. If

affirmative, the receiver sends a prediction to the sender

for several next expected chain chunks. The prediction

carries a starting point in the byte stream (i.e., offset) and

the identity of several subsequent chunks (PRED

command). Upon a successful prediction, the sender

responds with a PRED-ACK confirmation message.

Once the PRED-ACK message is received and

processed, the receiver copies the corresponding data

from the chunk store to its TCP input buffers, placing it

according to the corresponding sequence numbers. At this

point, the receiver sends a normal TCP ACK with the next

expected TCP sequence number. In case the prediction is

false, or one or more predicted chunks are already sent, the

sender continues with normal operation, e.g., sending the

raw data, without sending a PRED-ACK message.

Proc. 1: Receiver Segment Processing 1. if segment carries

payload data then

2. calculate chunk

3. if reached chunk boundary then

4. activate predAttempt()

5. end if

6. else if PRED-ACK segment then

 7. processPredAck()

8. activate predAttempt()

9. end if

 Proc. 2: predAttempt()

1. if received chunk matches one in chunk store then

2. if foundChain(chunk) then

3. prepare PREDs

4. send single TCP ACK with PREDs according to Options

free space

 5. exit

6. end if

7. else

8. store chunk

9. link chunk to current chain

10. end if

11. send TCP ACK only

Proc. 3: processPredAck()

1. for all offset PRED-ACK do

2. read data from chunk store

3. put data in TCP input buffer

4. end for

C. Sender Algorithm

When a sender receives a PRED message from the receiver,

it tries to match the received predictions to its buffered (yet

to be sent) data. For each prediction, the sender determines

the corresponding TCP sequence range and verifies the hint.

Upon a hint match, the sender calculates the more

computationally intensive SHA-1 signature for the predicted

data range and compares the result to the signature received

in the PRED message. Note that in case the hint does not

match, a computationally expansive operation is saved. If

the two SHA-1 signatures match, the sender can safely

assume that the receiver’s prediction is correct. In this case,

it replaces the corresponding outgoing buffered data with a

PRED-ACK message.

D. Wire Protocol
In order to conform to the existing firewalls and minimize

overheads, we use the TCP Options field to carry the PACK

wire protocol. It is clear that PACK can also be

implemented above the TCP level while using similar

message types and control fields. Fig. 3 illustrates the way

the PACK wire protocol operates under the assumption that

the data is redundant. First, both sides enable the PACK

option during the initial TCP handshake by adding a PACK

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 10, October 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41075 352

permitted flag (denoted by a bold line) to the TCP

Options field. Then, the sender sends the (redundant)

data in one or more TCP segments, and the receiver

identifies that a currently received chunk is identical to a

chunk in its chunk store. The receiver, in turn, triggers a

TCP ACK message and includes the prediction in the

packet’s Options field. Last, the sender sends

confirmation message(PRED-ACK) replacing actual data

Sender algorithms. (a) Filling the prediction queue. (b)

Processing the prediction queue sending PRED-ACK

Fig.2. Sender algorithms. (a) Filling the prediction

queue. (b) Processing the prediction queue and sending

PRED-ACK or raw data.

PACK wire protocol in a nutshell:

Fig 3 PACK wire protocol

6. OPTIMIZATIONS

For the sake of clarity, Section III presents the most basic

version of the PACK protocol. In this section, we describe

additional options and optimizations.

A. Adaptive Receiver Virtual Window
PACK enables the receiver to locally obtain the sender’s

data when a local copy is available, thus eliminating the

need to send this data through the network. We term the

receiver’s fetching of such local data as the reception of

virtual data. When the sender transmits a high volume of

virtual data, the connection rate may be, to a certain extent,

limited by the number of predictions sent by the receiver.

This, in turn, means that the receiver predictions and the

sender confirmations should be expedited in order to reach

high virtual data rate. For example, in case of a repetitive

success in predictions, the receiver’s side algorithm may

become optimistic and gradually increase the ranges of its

predictions, similarly to the TCP rate adjust

Proc. 4: predAttemptAdaptive()—

obsoletes Proc. 2

1. {new code for Adaptive}

2. if received chunk overlaps recently sent prediction then

3. if received chunk matches the prediction then

4. predSizeExponent()

 5. else

6. predSizeReset()

7. end if

8. end if

9. if received chunk matches one in signature cache then

10. if foundChain(chunk) then

11. {new code for Adaptive}

12. prepare PREDs according to predSize

13. send TCP ACKs with all PREDs

14. exit

15. end if

16. else

17. store chunk

18. append chunk to current chain

19. end if

20. send TCP ACK onlyment procedures.

Proc. 5: processPredAckAdaptive()—

obsoletes

Proc. 3

1. for all offset PRED-ACK do

2. read data from disk

3. put data in TCP input buffer

 4. end for

5. {new code for Adaptive}

6. predSizeExponent()

B. Cloud Server as a Receiver
In a growing trend, cloud storage is becoming a dominant

player from backup and sharing services to the American

National Library, and e-mail services. In many of these

services, the cloud is often the receiver of the data. If the

sending client has no power limitations, PACK can work to

save bandwidth on the upstream to the cloud. In these cases,

the end-user acts as a sender, and the cloud server is the

receiver. The PACK algorithm need not change. It does

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 10, October 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41075 353

require, however, that the cloud server—like any PACK

receiver— maintain a chunk store.

C. Hybrid Approach PACK’s receiver-basedmode is

less efficient if changes in the data are scattered. In this

case, he prediction sequences are frequently interrupted,

which, in turn, forces the sender to revert to raw data

transmission until a new match is found at the receiver

and reported back to the sender. To that end, we present

the PACK hybrid mode of operation, described in Proc. 6

and Proc. 7.When PACK recognizes a pattern of

dispersed changes, it may select to trigger a sender-

driven approach in the spirit of [4], [6] and [7].

Proc. 6: Receiver Segment Processing Hybrid—

obsoletes Proc. 1

1. if segment carries payload data then

2. calculate chunk

3. if reached chunk boundary then

4. activate predAttempt()

5. {new code for Hybrid}

6. if detected broken chain then

7. calcDispersion(255)

8. else

9. calcDispersion(0)

10. end if

11. end if

12. else if PRED-ACK segment then

13. processPredAck()

14. activate predAttempt()

15. end if

Proc. 7: processPredAckHybrid()—obsoletes

Proc. 3

1. for all offset PRED-ACK do

2. read data from disk

3. put data in TCP input buffer

4. {new code for Hybrid}

5. for all chunk offset do

6. calcDispersion(0)

7. end for

8. end for

7. CONCLUSION

 The proposed PACK is a receiver-based, cloud-friendly,

end-to- end TRE that is based on novel speculative

principles that reduce latency and cloud operational cost.

PACK does not require the server to continuously

maintain clients’ status, thus enabling cloud elasticity

and user mobility while preserving long-term

redundancy. Moreover, PACK is capable of eliminating

redundncy based on content arriving to the client from

multiple servers without applying a three way handshake.

8. FUTURE WORK

Our evaluation using a wide collection of content types

shows that PACK meets the expected design goals and

has clear advantages over sender-based TRE, especially

when the cloud computation cost and buffering

requirements are important. Moreover, PACK imposes

additional effort on the sender only when redundancy is

exploited, thus reducing the cloud overall cost. Two

interesting future extensions can provide additional benefits

to the PACK concept. First, our implementation maintains

chains by keeping for any chunk only the last observed

subsequent chunk in an LRU fashion. An interesting

extension to this work is the statistical study of chains of

chunks that would enable multiple possibilities in both the

chunk order and the corresponding predictions. The system

may also allow making more than one prediction at a time,

and it is enough that one of them will be correct for

successful traffic elimination. A second promising direction

is the mode of operation optimization of the hybrid sender–

receiver approach based on shared decisions derived from

receiver’s power or server’s cost changes

REFERENCES

[1] E. Zohar, I. Cidon, and O. Mokryn, ―The power of prediction: Cloud

bandwidth and cost reduction,‖ in Proc. SIGCOMM, 2011, pp. 86–97.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,R.Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, ―A view

of cloud computing,‖ Commun. ACM, vol. 53, no. 4, pp. 50–58,

2010.
 [3] U. Manber, ―Finding similar files in a large file system,‖ in Proc.

USENIX Winter Tech. Conf., 1994, pp. 1–10.

[4] N. T. Spring and D. Wetherall, ―A protocol-independent technique for
eliminating redundant network traffic,‖ in Proc. SIGCOMM, 2000,

vol.30, pp. 87–95.

[5] A. Muthitacharoen, B. Chen, and D. Mazières, ―A low-bandwidth
network file system,‖ in Proc. SOSP, 2001, pp. 174–187. [6] E. Lev-

Ran, I. Cidon, and I. Z. Ben-Shaul, ―Method and apparatus for

reducing network traffic over low bandwidth links,‖ US Patent
7636767, Nov. 2009.

[7] S.Mccanne andM. Demmer, ―Content-based segmentation scheme for

data compression in storage and transmission including hierarchical
segment representation,‖ US Patent 6828925, Dec. 2004.

[8] R. Williams, ―Method for partitioning a block of data into subblocks

and for storing and communicating such subblocks,‖ US Patent

5990810, Nov. 1999.

[9] Juniper Networks, Sunnyvale, CA, USA, ―Application

acceleration,‖1996 [Online]. Available: http://www.juniper.net/us/
en/products-services/application-acceleration/

[10] Blue Coat Systems, Sunnyvale, CA, USA, ―MACH5,‖ 1996

[Online]. Available: http://www.bluecoat.com/products/mach5
[11] Expand Networks, Riverbed Technology, San Francisco, CA, USA,

―Application acceleration and WAN optimization,‖1998 [Online]

BIOGRAPHIES

A. Sree Valli pursuing Master of Computer

Technology in Software Engineering in KIET

Kakinda, East Godavari, A.P, India.

R. Chandra sekhar working as an Assistant

Professor in KIET College of Engg,

Kakinada. Presently he is pursuing Ph.D in

Big Data. His area of interests are cloud

computing and Big data.

